El El QUIC Protocol Overview for Enterprises

With Packet Analysis Examples

Bill.Alderson@Securitylnstitute.com

[=]

Course PDF https://CE.SecurityInstitute.com/QUIC ‘ f —

& 15"”1 -I"tﬂntﬂl' #

ISF ¥ 2024

Information Security Forum
for Texas Government

PacketmanQ07

INNOTECH
©)ISSA

QUIC

REPLACES
TCP-SSL-HTTP

READY ?

Information Systems Security Association
International

/ % ISF u u I c

@ |PROTOCOL

QUIC Transport Protocol
IETF rfc-9000 & related rfcs

SUDf :

NC-Winpey,
ERROR-CORRECTION
CoNNECTION-MICRATION
FORWARD-ERROR-CORRECTION

DESKTOP

rewal\N/ B Bracesook

U ISTREAM

|—ri ".-II lll'

iUIDEﬂ'ENCRYF;TIONmTERNET
LOW‘ ATE NCYCLDUDFL

SYN- AEKD
CGNEESTIDN

[IlesrulFr-'El:nti E
ATACRAMZ O =, -
EXPERIMENT 22 (_ 5 V 5 OB
AN SMBZ%
B
2

DELAY-TOLERANT., }- o)
TRANSPGHT =Fo RC E
] X |ETF CDNF‘ERFGEMANC A
% 22 OGLE 1] , BROWSER-ENABLED <
55'--1 Ih:-h’.% D 1" "J"MIE%OS'IE}UFT
D MosiLe\ LJ u'(.z amai/ (T OV VBE
LATENEY Spm-ElT
PrROTOCOL c_. Q{
SEARCH .5 Dw LATENC\"
o MIDDLEBOXES
& QPacker-Numser
RuraL-UrBan
SLOW-START
QUIC-55H
METWORK

[=]
L

Course PDF httns://CF Securitvinstitute com/QUIC

B Microsoft jntel

".='|'=I:i" LT.

Windows Server 2025 i€
Overview of what's New

. ll' \
N

QUIC Protocol Is Rapidly
Replacing TCP!

SharkFest 2023

How QUIC Works And What Are The Security Concerns?

Why QUIC is Faster? Show You How To Perform “Packet Based Analysis”

Distillation of 1,000+ IETF rfc-9000 and Related Standards Pages

Why Does It Lower Firewall Sessions 20 to 1 vs TCP?

How to Implement QUIC on Your App or Site - Fast!

Cloudflare | % E
.

Sécuriiy & Attacks E

:QUIC Protocol Adoption

Application layer attack activity

Top 10 attacks by target or source location (& o& Sort order: @ Source O Target

Insight into network and application layer attack traffi

us
us
Layer 7 Attacks :
RU
Top Mitigation Techniques @ Oig Ioz CAI
N i
Other 156 : 5GI
. 1.2% les - " SO FR=
—— = = BRE
I NL — g = VNI
=D - o - . wli
e —— w
Ion : enl

Source Target

IP Reputation
4.5%

WAF DDoS
50.2% 44.1%

Layer 3/4 Attacks

DDoS Attack Type (2) o5 TLS 1.2 vs. TLS 1.3 vs. QUIC

Distribution of secure traffic by protocol (2) o

= TLS1.2 == TLS13 == QUIC
6.3% 64.9% 28.7% HTTR/3

0 28.0%
TCP o HTTR/2
70%
27.9% o 62.7%
UDP 50%
70.3% 40%
Other o HTTP/1.X
. 1.8% 20% 9.3%
10%

0%
Tue, Mar 26 Wed, Mar 27 Fri, Mar 29 Sat, Mar 30 Mon, Apr 1

Current Internet 1x QUIC 3x Faster

Server Client Server
——SYN—> - QUIC —Quic—>
<SYN ACK—] TLS |e—Quic—
——ACK—y < = _HTTP ——Quic—,

—Hello—; 300ms 100ms ‘

llo— :
«welo—] TCPVs. QUIC auic

> 3
«Encrypt X LATENCY

<“—Get Faster
- Reply— SAVINGS

—Next—, ¢

P Firewall Vendors
~ - o Tell Enterprises

7 QLI “DENY” QUIC

Firewall Vendors that recommend Blocking QUIC UDP Port 443 in
Enterprise Networks

Cisco
PaloAlto Networks

CheckPoint
Fortinet

Each vendor provides specific instructions to block QUIC

Web Performance

at a Price... A An “Attractive Nuisance”
AN Until Enterprise Firewall
5 L — Improvements Secure Its Use

2012 accidentally discovered... by Jim Roskind at
Google, now AWS

Google, YouTube, Gmail, Facebook, Microsoft
Uber and Cloudflare already use QUIC!

Distant or rural wusers receive the biggest
performance gain.

QUIC Initial Connect — some headers exposed

L_!_ sl == “rl I i
Wo. Time Source Destination Frofood Length Glen QPMum Cumiytes Info Server Name Indeation QVer Proof demand Idie conection state QMaxin QESinARTT Initial session/one Iniial stream fic QFadle ©
10.608000 171.20.1.20 173.194.141.247 QUIC 1302 1358 1 1392 Client Helle rl---sn-gdf7sn7r.googlevidec.com QO50 M504 3 (BxDeepoile) 180 13148 15728648 6291456 £08
S 9.829508 172.20.1.28 173.194.141.247 QUIC 1382 1358 a 2784 Client Wells rl---sn-gdf7en?r.googlevideo.com QUSA NS09 3 (Bxe3aedle) 188 23149 15728648 6291456 711
- SO U— - . ! ! ! ! ! ! !
Tag/value: 72313d3d3d73602d71 3466377360377 220676F6F6T6CE5TE6064656F 2062660
Server Nase Indication: rl---sn-qdf7sair.googlevides . cos LY | | | | | | |

w Tagfvalue: STE (Source Address Token) [lsS54)
Tag Type: STE (Source Address Token)
Tag offiet end: 86
[Tag length: %4]
Tag/value: cBelllclBferaladiniascodas4s3fFldl3cecedb4Gdcec6baTabadlcdlafcaldaciade.

B < 200 % 3% 46 47345 00 90 00,75 X0 46 29 There are a few things a firewall can validate in the initial QUIC connection

2d 73 Be I1d T1 34 66 37 73 B¢ 37 71 2w 67 &F &F | -sn-g4F7 snTr.goo

B7 b BS 76 59 &4 65 BF 2e BY &F &d <% &2 11 <1
Sopl @B 97 BL Ad 19 38 5S¢ bd a5 45 3IF Fl 42 3¢ ec o4 Mgy -Efcx
GUFE b 4B 9d eb Eb 37 4b a9 1c 82 4F cb 14 ae B 4 BH--KTK B |
P = e e atec ol I fom M R ALEL bt There also a few things the firewall can harvest from connection requests for
128 £ 7
138 86 34 48 44 %0 11 6580 17 S LA S 0O 20 M 6F T Tos de reference in addition to the IP addresses only a vendor can implement.
L4028 43 a3 Bd B b 41 4% 53 4T 43 68 71 of Bd 65
JIGR X XB 36 e 30 2 34 32 34 30 e 31 3% 38 1 57 Y BE. 8,42 40,1098 W
160 B9 Ge B4 BF T? 73 28 de 54 28 11 Je 30 3b 20 indows N T 18.8;
LE it o b bk B G LEELE T TR A powerful firewall can build custom filters with the help of Wireshark traces

Enterprise firewall
improvements need to
identify well formed
QUIC packet headers

Improve and upgrade
SMB - Home router-
firewalls to identify

QuIC

Technically it is
possible upgrades can
be accomplished at
reasonable costs

New firewalls
worldwide might cost
S1 Trillion and take 10+

years

J

Speed Security

Why Middleboxes (Firewalls) Blind to QUIC?

Discrete HTTP TCP SSL TLS Transactions

4) CP SYN
50 TCP Sessions To 50 x 100ms
Get Full Web Page =5 Seconds \HTTP GET~/

N AREPLA

Middleboxes (Firewalls) Blind to QUIC
P }[FwewaH\ e S a "N Firewall

Load
Bal

Switch
Router

NAT C Internet < TCP

PAT | N STATE

g

— NEZ N s D
1 Session 1 x 100ms g:gﬁ Multi-Media

(_
—| To Get Full = 100ms ACK Multi-Stream
| Web Page Plus 50 Gets HTTP/3 GETS; Single Session

- QEPLY = J
QUIC Combined O-RTT HTTP TLS FEC w/Fast Mobile Reconnects

enchmarks
Prove |
Faster!

QUIC vs. TCP Full Page Packet by Packet Performance Analysis

NN ey \penpea

Flo Bl Yew S Cwauwe &

'L RBAssnsLLl=qaan ' @

Swe Pexmaze”
122.06.0.09 215,54
Q16,5009 Ve
216,50, 180,
172.20.1.29

1.9

e

122,00, 09
£ UV PR A
206.90.290,
216,848,004,
PIA.SAGA.

216,848,004,
12.20.0.9
172.2¢.1.

21€.52.103.,
16.58.1903.,

216,588,148
172.m0 0%

216,858,108,
”i S8

Measurement

lime span, seconds
Average pps
Average packet size

Sluimiaa Thpbury Widwe Toh Sy . . .

BE RsessRql =007

Potioel gl Quen T PNLm " neten
e 1V e 1 Tent wlila
e 1992 20e 1 -
i A 2 Skncan | YMelil oreed Packet | 2 (]
1302 23 2 1tens o SATEL » MEtrI(4L3] CACK) Sceel Ac)
LRTT, BOTO-R1ES «420050. 30
3 - 11, 0 LI v S N P T B AL - MULei4s) _GIN) Seen) Arl
7 RTT, CCID=S1>75cad2eseess 7 B.€74715 172.23.10.25 . L Cliswt bellc
RYT, SCID-8107S5cadd2es0cit 3 E.€8045T 172.22.1.2¢ . . i, 3T kellc
i TR Tern Py oad o IR LR LI o D P 3 oe GAGAY TAEN]) Sewst Al
“ 2ol ey losd 19 ¥ 00r 107 16121, 5¢ r server tellc
24 raTectec Payided A1 0100008 10C.16.024.8¢ 172,201 20 Cerziiicate, Jerver Key Dxchesge,
38 aTectec Payised | 12 8.108042 < 184, 16.104.%5 SATAL o MEtpa(4Ll) CALK) Sce=131)
Pt o I, Dy Tivadd (KPR 13 0167585 Mt 1R 1E M T S Climv. Koy Fechuigw, Charge Cirem
e ratectec Paylsed LR TS . 102,091 WEDALBAN) - GALL LK) vega] Ari
33 Tectec Poyldad (ER€), DCIDeS11! 15 8.115635 .22.9. 172.2¢.1.20 wi. Servar bellc
i3 JTectec 34 [(KP€), DCID-B1oft 15 £.115688 W.22.9. 172,260 Certificate, Servar Key Exchange,
.- SRR T R e WA 299 = - a AR = I (AA) TAER] Sewoins
e J.eclen pt PLR PSS SRR S I O 1w A “livv. Key Latherge, Cherge Cloom
e yTectec { 10 P.14ET1) OK.06.024.90 172.2€.1 20 WRIs{AD) ~ S4TLL ALK | Jec-isDT
L & e Payla f TRANMATIE SIS 14 IR Mo fasstor Troor, Charge Civae
» 4 vl Py, DCTD-RY e 1 RSReee . 172,909 3 oa BATG TADK] Sew=i43%
3 PE), DCI0-MIDI 2 ¥, 1LM0s . 12,1 2%
232 Payliaad (ore) i3 B.170803 172.22.1.2¢ 184.22.2.38
2339 p Payloed [KPE) 34 £.103308 172.22.1.2¢ 184, 16.124.95 TCF SATLL « MITEa(443) TACK] Se=iT4 4
. M), I TR o BN W L2 VR N ") TAER] “ewe i

\ =1 Top is session starl... bollom is session end gld(}) l») L\‘ (4 ()

e 1362 stacted Paylesd (M) $6) 2.262731 104.18.27.46 172.20.0.2¢ TiSwl.2 1344 lége A3011cation Cata [TC° sagnaet of ¢
are 1382 pratacted $7A 2.063751 1041827, 172.20.1. ¢ 386 soolicatisn Lata, Aoo)1caeisn Bam
Qe Ll Dol il i BETR-ALF L IR 17. WM AR - L] LiEs e y €] Swy-3R7 ¢
PR (R 1054 atected AL M WA 12 B 164,105,129, 596 1L, 2
e 1353 staczed ($73 2.288620 104.15.124.96 172.22.1.29

wre 1352 74 2.37075) 104.15.104.96 172.22.1.29 1514 + 64755 [ACK) S23-S2M
are 18 = 3 S7C 2. 470785 104.15.124.08 172,09, 1" LLon{A28] = 4TSS [25X] Suy-Sea00
un 1 ot wr il Pyt } Bl 1A e SV AN LLEET PR B seelie

Wl " stecied Payiced W 130000 104,106, ¢ Il Aoolication

arc) stacted Payicsd (K3, CCICeaitl s 106.15.124. i Tsvi.2 8 Aooi1catise Cota

wre % Protacted Paylosd (€3} Go - cZETNE 104.15.1M4.96 TCP s S4755 . Aiips[442) [A0K] Say-26€9

Full Page Load With Multiple Objects

QUIC RAW
Advantage

13 1 12
679 577 102
2371 1317 1.054
286 438 152
899 115 257
610673 667225 -56552 [
2060000 4053000 1993000

+ 64755 |ACK) S33-59EM

TCP QUIC Difference

92% Less Sessions

15% QUIC Fewer Packets

44% QUIC Significantly Better Time, seconds
53% QUIC Better Average pps

29% QUIC Larger packet size

-9% TCP Fewer Bytes

97% QUIC Better Throughput bits/s

Benchmark Page https://cloudflare-quic.com

Single Object One Video Load

UIC RAW
Measurement TCP QUIC Q Mixed Results TCP HTTP/2 Difference
Advantage

Sessions 1 1 0 0% Same Sessions

Packets 1985 2123 -138 |:- -7% TCP Fewer Packets

Time span, seconds 40.332 40.241 0.091 il 0% QUIC Marginally Better Time
Average pps 49 53 4 .:l 7% QUIC Better Average pps
Average packet size 1089 1192 103 B 9% QUIC Larger packet size

Bytes 2161738 2530541 -368803 |:— -17% TCP Fewer Bytes

Average bits/s 428000 503000 75000 I 18% QUIC Better Throughput bits/s

Full Page Load With Multiple Objects

UIC RAW
Measurement TCP QUIC Q Advantage QUIC HTTP/3 Difference
Advantage

Sessions 13 1 12 92% Less Sessions

Packets 679 577 102 15% QUIC Fewer Packets

Time span, seconds 2.371 1.317 1.054 44% QUIC Significantly Better Time, seconds
Average pps 286 438 152 53% QUIC Better Average pps

Average packet size 899 1156 257 29% QUIC Larger packet size

Bytes 610673 667225 -56552 -9% TCP Fewer Bytes

Average bits/s 2060000 4053000 1993000 97%| QUIC Better Throughput bits/s

Triple+ Web Performance

at a Price...

What Will

You Do?

DLP May Not Check QUIC TLS 1.3!!111

Users Private Cloud or On Prem Data Center Firewalls Public Cloud Internet
Or
DLP Category Text Search for PHI, Pii, SOC. or PCI Data DMZ

Data Loss Prevention DLP Solution
Examine Lock if

Contents Content Found Email Destined

eMail ‘v/(l Bﬂ . Outside Organization
N N/ Namsz) . External Internet Email
ﬁﬂ nent& | WA I Sen \i

Col
551 Files

Report Delete (Unsecure can be read)

Stops 1 —x Records

DLP sometimes scans file)
4@* /"shares for sensitive Content Keep Vital Bulk Data Local
[Stops Millions of Records
A File Any Kind of Server
- CIFS Services R 5
NES . Databases

Root Access
Remote Access
File Servers

Internal Private IOT Devices
Organization Web App Biomedical
HVAC
e - Card Readers
g —aﬂ : @ Routers / Switches
SSL _ Vital Bulk Data
Private

Millions of Records

Y

]

Web-App
Server
SaaS Cloud
Or Other Data
Cloud Center
Browse = A
0% ' ?
o =
r—y SsL Saas
Web-App Vital Bulk Data
Server Millions of Records

When does Encryption Prevent DLP Scanning?

Using 3" party private cert prevents scanning
90+ Percent of Malware arrived Via Encrypted Traffic: WatchGuard

Firewall / DLP Inspect Inspect Protocol Firewall / DLP Cleartext Orgn Owned Internet or 3™ Party Owned
Headers or Data Headers Data Inspection Private Certificate Private Certificate

Native Cleartext Native Cleartext Native Cleartext

Mative Cleartext) (Mative Cleartext Native Cleartext) [Se rver
Private Cert Decrypted Cleartext [‘

Private Cert Decrypted Cleartext Se rver

55 TLS bcl:\:ftlﬂut

N

Client j—CIeartext HTTP TCP Port 80

Dataloss Firewall Analyzer
Prevention

Native Cleartext
Native Cleartext

_/

Client . SSL TLS HTTPs TCP Port 443

S.SLTJ

. ative Clearte o ion Possible d
Cllent _/.' SSL TLS HTTPS TCP PG”’. 443%._&(ma:ive E:c—ar_eﬁ PBZ@I"I[?;GTD;F;BMVIE}F l/f! 3r Pa rty Sewepr m)
== P[:x_-nl-:; el Anstyest Most Clouds Use 3™ Party Server Certs

No Decrypticn
POz @ D2 . %

Client j QUIC TLS UDP Port 443

Private Cert Decrypted Cleartext [
Private Cert Decrypted Cleartext . Se rver
bol:cftlflul
‘u’er\f Few Private QUIC Servers

Client {&)}——auic Tis uop port 443— Yy O (FEorr - (e e) (& 3" party Serverg=)

e
Dataloss Firewsll Apalyzer Frivate cer

Prevention QUIC Near 100% 3™ Party Servers

Fire Anal

N N TN TN TN

Here is a message from Vinton Cerf, known as
the father of the Internet, created to encourage
us on Security Zero-Day Prevention.

Vinton Cerf Message for us on

p a] o00:03/03:16

50 year old TCP’s Idiosyncrasies

SOME REASONS FOR QUIC

TCP Data Duplication Details

m d Time/Sequence Graph
320000 — .
e Bl f
300000 — [' |
l
1 retransmissions of
= | subsequent
packets
270000 —
260000 — L) T,
o ““m&\
il — H\ 2) Dozens, of.
retransmissions
—— of the same two
. packets
220000 —
210000 —
200000 —

70000 -
60000 -

50000
40000
30000

20000 -
10000 -

70000 -

60000

50000

40000 -

30000 +

20000 -

10000 -

0
3000000
2500000
2000000
1500000
1000000

500000

0-

1570

Nt Data Dup

iIcation

TCP Window

Significa

S L) W { IO L

OSACK3

B SACK2

@ SACK1

| I .

I A i

Actual vs. Good Data Transmission

Packet loss initiates ineffective

—Total Data |

recovery causing significant

— Good Data |

additional overhead

— Taad |
_

Bandwidthy _——

Ba_ndwidth

~— Required) o

1550 — - —

1530 -
1510 43———
1490
1470

__Timespan

w0t

1430

1410 =

1380

20

Data Duplication & App Processing

Time/Sequence Graph : [;3

:

B PSS

|
T

lllllllllIllllllllllllllllll

;

§

| transactionin
1/18 the time

:

E

IIIIIIlllllllllllllllllllll

18§l

[|
|l |

?
;

:

| l L L 1
:

- | l\l LL g

Illlillllllllllllllil ‘Illllilllll

10 11 12 13 14 15 16 17 18 19 S 10

L - —

TCP — Packet Loss — Poor Recovery

41991 > https [ACK] Seq=1292614730 Ack=1606373238 Win=65535 Len=0

https > 41991 [PSH, ACK] Seq=1606381036 Ack=1292614730 Win=64316 Len=1380 z

https > 41991 [PSH. ACK] Seq=1606382416 Ack=1292614730 Win=64316 Len=848 Ack-SLE Hole Size

41991 > https [ACK] Seq=1292614730 Ack=1606375466 Win=65535 Len=0

https > 41991 [PSH, ACK] Seq=1606383264 Ack=1292614730 Win-64316 Len=1380 1303245196 should be 1380
> 41991 [PSH, ACK] Seq:ll_6_0_6_3_&_4_6_4_4| ACk=1797614730 Win=04310 Lem=848

12926147§0 Ack= 1606377960 W1

https [
41991

)

Selective Ack Numbers
are mis-calculated

b1 Seq=1292614770 Ack—1606384644 Win=65535 Len=0 ACk-SLE
, ACK] Seq=1600892176 Ack=1292614730 Win=64316 Len=1380 e

. ACK] Seq=1606393556 Ack=1292614730 Win=64316 Len—848 Sou

] 5eq=1292614730 Acmw' 4687 L en=0 Last od ACK have been

ACK] Seq 1606394404] Ack~ 1292614730 Win-b4316_LoF :ii[! S V— E—"]

SLE-SLR hole
correct at 848

[ACK] 5eq=1292614730 ACKkL1006305518]Win=65535 Len-0 RecOVery

https [PSH, ACK] Seq=1606395518 Ack=1202614730 Win-64316 Len=1114

https > 41991 [PSH. ACK] Seq=1606396632 Ack=1292614730 Win=64316 Len=1380

https > 41991 [PSH. ACK] Seq=1606398012 Ack=1292614730 Win=64316 Len=848

https > 41991 [PSH. ACK] Seq=1606398860 Ack=1292614730 Win=64316 Len=1380 Nevertheless, recovery occurs
https > 41991 [PSH. ACK] Seq=1606400240 Ack=1292614730 Win=64316 Len=848]
https > 41991 [PSH. ACK] Seq=1606401088 Ack=1292614730 Win=64316 Len=1380 over three seconds later!
https > 41991 [PSH. ACK] Seq=1606402468 Ack=1292614730 Win=64316 Len=848

https 41991 [PSH, ACK] Seq=1606403316 Ack=1292614730 Win=64316 Len=1380

https > 41991 [PSH. ACK] Seq=1606404696 Ack=1292614730 Win=64316 Len=848 This behavior repeats
41991 > https [ACK] Seq=1292614730 Ack=1606398012 Win=65535 Len=0 :
https > 41991 [PSH, ACK] Seq=1606405544 Ack=1292614730 Win=64316 Len=1380 throughout the session.
https > 41991 [PSH, ACK] Seq=1606406924 Ack=1292614730 Win=64316 Len=848

41991 > https [ACK] Seq=1292614730 Ack=1606400240 Win=65535 Len=0

https > 41991 [PSH, ACK] Seq=1606407772 Ack=1292614730 Win=64316 Len=1380

https > 41991 [PSH, ACK] Seq=1606409152 Ack—=1292614730 Win=64316 Len—848

41991 > https [ACK] Seq=1292614730 Ack=1606402468 Win=65535 Len=0

https > 41991 [PSH, ACK] Seq=1606410000 Ack=1292614730 Win=64316 Len=1380

https > 41991 [PSH, ACK] Seq=1606411380 Ack=1292614730 Win=64316 Len=848

41991 > https [ACK] Seq=1292614730 Ack=1606404696 Win=65535 Len=0

https > 41991 [PSH, ACK] Seq=1606412228 Ack=1292614730 Win=64316 Len=1380

https > 41991 [PSH, ACK] Seq=1606413608 Ack=1292614730 Win=64316 Len—848

N v N e N T N N e N

41991

https [ACK] 5Seq=1292614730 Ack=1606405544 Win=64687 Len=0

HOP/TTL Incongruity “our own man in the middle”

Identification: Ox36co(140257D
Flags: 0x04 (Don't Fragment)
Fragment offset: O
Time to Tiwe:
Protocol @ TCP Qw0
Header checksum: Cxe3b
Source: 214.13.192.184 (2
Destination: 150.17F7.195.220
Transmission Control Protocol, Src

Identification: Gxﬂ?dfq
Flags: 0«04 (Don't Fragment k

correct]
3.192.184)
0.177.195.220)

rt: 41991 (41991), : 443 (443), Seq: O, Ack: 1454884, Len: O

Fragment offset: O Incongruent Conaruent TTL Congruent
Time to 1ive: @D €— TIL & . Fragment ID
Protocol: TCP (CwOa) Fragment 1D Frugressinn

Header checksum: Oxlc2d [correct]
Source: 214.13.192.184 (214.13.19

917, Dst Port: 443 (4437, Seq: O, Ack: 1454884, Len: O

Identification: Ox36c im
Flags: 0O=04 (Don't Fagment)
Fragment offset:

;:;:E;;I‘ﬁ;;%ai Indicates "our own man in the middle" potential
Header checksum: Oxe3bl [correct] {FirEWﬂ", Wan Dptimizer, Load Bﬂlﬂnﬂer}

Source: 214.13.192.184 (214.13.192.184)
Destination: 150.177.195.220 (150.177.195.220)
¥ Transmission Control Protocol, Src Port: 41991 (419917, Dst Port: 443 (4430, Seqg: O, Ack: 1457378, Len: ©

CP — Session Performance

SEREEE

T ST R T S R T T B B R

:
|
i
1H
1E

’m e lmﬂiﬂiuil } e
| _l [T1 |[[]I | H[| | .|

1 000,000 rnukn:- M AL uﬁm&ﬁwﬁﬂmﬂ@ﬁﬁ%ﬂmmm&ﬂm .——m’-#hﬂu
500,000 i_‘ e ~ >
!1 bR R T ER T R L N B e T e L L L T e e LR L TR L e bR it

NAT, PAT or Route Changes Impact on Sessions
Instability of routing metrics

BGP Activity Summary

20000
——Total Churn
—=— Internal Update Churn
—=—[External Update Churn
——[nternal Withdraw Churn
A F ot gvi=y 5] |,'.-."‘ WOl ','-.-.,; y
10000

Total Churn

BB LER NS I IPNYBSBRTFABEYS

NREBSYNORIRYSHBE88ANRISNASEIAFS Y

LSS LSS L LN LR R AR EREE LR LSRR
9%

2008-02.
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
2008

2008-02
2008

2008-02
2008-02
2008-02
2008-02

]

25

QUIC Decrypted

‘ quic libre tls key test.pcapng - o
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am 2@ =QQaQrr
N |quic.stream.stream_id ==0 [X]=> RJE
No. T Since St Delta Source Destination Protocol Length Info
— 2637 13.099943000 0.043996000 192.168.0.211 quic2.end2endspeed.com QUIC 1292 Initial, DCID=79a35af38d80a3ff, PKN: 1, PADDING, PING, CRYPTO, CRYPTO, CRYPTO, CRYPTO, PING, CRYPTO, PADDING
2640 13.165631000 0.026792000 quic2.end2endspeed.com 192.168.0.211 QUIC 1294 Handshake, SCID=00000000000010097ec9e4b8c@a22578e354957c, PKN: @, CRYPTO, CRYPTO
2641 13.166051000 0.000420000 quic2.end2endspeed.com 192.168.0.211 QUIC 1294 Handshake, SCID=00000000000010097ec9e4b8c0a22578e354957c, PKN: 1, CRYPTO
2642 13.166051000 0.000000000 quic2.end2endspeed.com 192.168.0.211 QUIC 1288 Handshake, SCID=00000000000010097ec9e4b8c0a22578e354957c, PKN: 2, CRYPTO
2643 13.166500000 0.000449000 192.168.0.211 quic2.end2endspeed.com QUIC 93 Handshake, DCID=00000000000010097ec9e4b8c0a22578e354957¢c, PKN: 2, ACK
2644 13.167734000 0.001234000 192.168.0.211 quic2.end2endspeed.com QUIC 94 Handshake, DCID=00000000000010097ec9e4b8c@a22578e354957c, PKN: 3, ACK
2648 13.223102000 0.021612000 quic2.end2endspeed.com 192.168.0.211 QUIC 1123 Handshake, SCID=00000000000010097ec9e4b8c0a22578e354957¢c, PKN: 3, CRYPTO, CRYPTO, CRYPTO
2649 13.225165000 0.002063000 192.168.0.211 quic2.end2endspeed.com QUIC 94 Handshake, DCID=00000000000010097ec9e4b8c0a22578e354957¢c, PKN: 4, ACK
2650 13.225969000 0.000804000 192.168.0.211 quic2.end2endspeed.com QUIC 127 Handshake, DCID=00000000000010097ec9e4b8c®a22578e354957c, PKN: 5, CRYPTO
2651 13.226235000 0.000266000 192.168.0.211 quic2.end2endspeed.com HTTP3 125 Protected Payload (KP@), DCID=00000000000010097ec9e4b8c0@a22578e354957c, PKN: 6, STREAM(2), SETTINGS
2652 13.226678000 0.000443000 192.168.0.211 quic2.end2endspeed.com HTTP3 494 Protected Payload (KP@), DCID=00000000000010097ec9e4b8c0a22578e354957¢c, PKN: 7, STREAM(2), PRIORITY_UPDATE, STREAM(@), HE
2658 13.287632000 0.023162000 quic2.end2endspeed.com 192.168.0.211 HTTP3 288 Protected Payload (KP@), PKN: @, CRYPTO, CRYPTO, DONE, NCI, STREAM(3), STREAM(3), SETTINGS
2659 13.287632000 0.000000000 quic2.end2endspeed.com 192.168.0.211 HTTP3 1292 Protected Payload (KPQ), PKN: 1, STREAM(®), HEADERS
2660 13.287632000 0.000000000 quic2.end2endspeed.com 192.168.0.211 QUIC 1292 Protected Payload (KP@), PKN: 2, STREAM(®@)
2661 13.287632000 0.000000000 quic2.end2endspeed.com 192.168.0.211 QUIC 1292 Protected Payload (KP@), PKN: 3, STREAM(®@)
l-%] 12 27QQ172000 0O DOACAIANAN Andir)d anddandenasd Fram 1097 162 o 211 NITr 1709 Dnnatartad Daulaad /vDn\ DVNIs A CTREAM/ D\

~ Extension: quic_transport_parameters (len=102) 00 77 00 00 00 00 00 10 @} y
Type: quic_transport_parameters (57) 39 00 66 04 04 80 83 00 h3
Length: 102 05 04 80 01 00 00 06 04 @

> Parameter: initial max_data (len=4) 8585216
> Parameter: initial_max_streams_uni (len=1) 3
» Parameter: initial_max_streams_bidi (len=2) 128

y
> Parameter: initial_max_stream_data_bidi_local (len=4) 65536 d2 bo 94 04 80 21 4e 58 P.\@,
Parameter: initial _max_stream_data_bidi_remote (len=4) 65536 of c7 00 00 Of c3 99 05 m)}c
> Parameter: initial_max_stream_data_uni (len=4) 65536 la a0 03 02 01 02 02 12 60--20
> Parameter: max_idle_timeout (len=4) 65000 ms 44 29 b3 22 0b c3 ef f9 0+
R

Parameter: max_udp_payload_size (len=4) 65527
> Parameter: active_connection_id_limit (len=1) 2
> Parameter: GREASE (len=1) 25
> Parameter: ack_delay_exponent (len=1)
> Parameter: original_destination_connection_id (len=8)
> Parameter: initial_source_connection_id (len=20)
> Parameter: stateless_reset_token (len=16)

@a 13 od 4c 65 74 27 73 1-0---U-
31 @b 30 09 06 03 55 04 Encrypt
od 32 33 30 34 31 36 30 <-+-R30- -
32 33 30 37 31 35 30 30 03434z
1f 30 1d 06 03 55 04 03 3433z0!1
65 6e 64 32 65 6e 64 73 <-quic2.

v CRYPTO 30 82 01 22 30 od 06 09 peed.com
Frame Type: CRYPTO (0x0000000000000006) 01 05 00 03 82 01 Of @@ *-H-----
Ooffset: 125 00 bo 07 19 4a 30 338 @-:-:---
Length: 926 82 d2 38 1c ff b6 35 c6 y3 -t
Crypto Data 23 b6 2e f6 6a ae e2 ad T cQ

~ TLSv1.3 Record Layer: Handshake Protocol: Certificate (fragment) ig gg gg 2: ?g g; gg gg =92('Z

Handshake Protocol: Certificate (fragment)
Reassembled Handshake Message in frame: 2648

Ob 43 e8 bl 3b 8 31 97 ‘B-n-<
32 50 9c 88 95 ¢4 5c 02 P--ujC--

| Frame (1294 bytes) Decrypted QUIC (9 bytes) Decrypted QUIC (1060 bytes)

‘ Wireshark - 1/0 Graphs - quic libre tls key test.pcapng — a X

Wireshark I/O Graphs: quic libre tls key test.pcapng

300000 -
250000 -
200000 -

w

1S

o

o

o 150000 -

8

&
100000 -

50000 -
/
0 C ~ 1 I
0 10 20 30
Time (s)
No packets in interval (9.4s).

Enabled Graph Name Display Filter Color Style Y Axis
O All Packets . Line Bytes
O TCP Errors tcp.analysis.flags . Bar Bytes
] Filtered packets quic.stream.stream_id == 64 . Line Bytes
2 Filtered quic.stream.stream_id == 60 . Line Bytes
] Filtered packets quic.stream.stream_id == 56 . Line Bytes
] Filtered packets quic.stream.stream_id == 48 . Line Bytes
(] Filtered packets quic.stream.stream_id == 74 . Line Bytes
] Filtered packets quic.stream.stream_id == 84 . Line Bytes
[] Filtered packets quic.stream.stream_id == 52 Line Bytes

+ = th E‘g Mouse © drags (0) zooms Interval 200ms ~ [Time of day O Log scale B Automatic Update Reset

Save As... Copy Copy from Close Help

Wireshark I/O Graphs: quic libre tls key test.pcapng

Bytes/200 ms

How to identity existing QUIC Users

i Investigation

e I «f Perspective: Outgoing ~ Protocok: UDP = | @ - Options ~

, NEW YORK:

I B3 GooalLE I I OPENDNS

#8s Map metric: S-ASOrg =

C-Type S-Type C-bps S-bps C-Bytes « S-Bytes Al I Sessions - C-Fraud Low Hops High Hops Hop Jitter 5-DNS C-City C-Country S-City S-Country

1known Business 964.12 kbps 83.00 bps 24 26 2 Unknown United State:
Tknown 1.46 Mbps 00 bps 26 26 0 Unknown

Tknown Mbps 1.12 kbps 25 26 1 Unknown

Tknown Unknawn 4.01 Mbps 2.00 kbps 26 26 Unknown Unknown
tknown Business 1.71 kbps 0.00 bps 2.67 MB 2758 24 26 2 1e100.net Unknown United State:
Tknown 39 52 13 Unknown United State:
Tknown 25 41 16 =100 Unknown United State:
Tknown 24 24 0 Unknown United State:
Tknown 1€ net Unknown United State:

Tknown Unknow: United State:

Tknown nknow! United State:

Tknown nknows United State:

b
b}
oo

tknown

<]
T

nkno United State:

a
2000000
£
(V¥
e
o,
D_‘ﬂ

tknown 54 56 2 7.1e100.net Unknown United State:
1known hitps 443 3 Cr [} 56 56 a 85.147 7.1e100.net Unknown United State:
1known 4.08 kbps https 443 2 A 0 39 4 2 36.93 Unknown United State:
Al Buicinasc A2 A3 khne RAR NN hne 1ANTQR LR 21 LR -] httnc 447 4 2 n a5 An 2 L a5 1nA 3 11 nat Hmlrrowm Hmited Stata:

What to do next?

A.) Update Router-Firewall
B.) Use QUIC carefully
C.) Join SecurityInstitute.com QUIC Protocol Space

A.) Inform IT Security about QUIC working, or not.
B.) Careful they don’t “shoot the messenger”

A.) Learn tools to identify QUIC
B.) Become Certified in QUIC

A.) Let us know about QUIC supported products
B.) Tell us about new QUIC products coming
C.) Sponsor and participate in Securitylnstitute.com QUIC

https://securityinstitute.com/

Triple+ Web Performance

at a Price...

What Will

You Do?

Decrypting TLS & QUIC Headers

To record QUIC session information including encryption keys, you can use the SSLKEYLOGFILE environment variable. This
method is supported by many TLS libraries, such as OpenSSL and BoringSSL, which are often used in QUIC implementations. The
SSLKEYLOGFILE environment variable specifies a file path where the TLS session secrets will be written, enabling decryption of
QUIC traffic for analysis and diagnostic purposes.

Here's how to use the SSLKEYLOGFILE method:

%)J.Sﬁé the SSLKEYLOGFILE environment variable to the desired file path before starting the client or server application that uses

For Linux and macOS:

javascript

export SSLKEYLOGFILE=/path/to/your/sslkeylogfile.txt
For Windows:

vbnet

set SSLKEYLOGFILE=C:\path\to\your\sslkeylogfile.txt

2.Run the client or server application that uses QUIC. The application will write the TLS session keys to the specified file as they
are established.

3.Use the collected keys to decrypt and analyze the QUIC traffic. Tools like Wireshark can use these keys to decode encrypted
QUIC streams in captured packet data.

Remember that handling encryption keys securely is critical, as exposing these keys can compromise the security and privacy of
the QUIC sessions. Only use this method for diagnostic purposes and with the appropriate permissions, and always follow best
practices for handling sensitive data.

*Some Chat GPT helped find and organize some of this text.

QUIC Improvements over TCP

Head-of-line (HOL) blocking is a problem that occurs in TCP when a lost or delayed packet prevents the processing of
subsequent packets in the same data stream, causing increased latency and reduced performance. QUIC solves the head-of-
line blocking problem more effectively than TCP by employing the following techniques:

1.Independent streams: QUIC uses multiplexed streams over a single connection, where each stream is independent of the
others. This means that if a packet is lost or delayed in one stream, it does not affect the other streams. In contrast, TCP
treats all data within a connection as a single, ordered byte stream, which means that any packet loss or delay can block the

entire connection.

2.Stream-level error correction: QUIC handles error correction and retransmissions at the stream level, rather than at the
connection level, as in TCP. This enables QUIC to recover from packet losses in one stream without affecting other streams,

further reducing the impact of head-of-line blocking.

3.Faster packet retransmissions: QUIC can retransmit lost packets more quickly than TCP because it does not rely on a single,
global retransmission timer. Instead, QUIC uses per-packet timers and can quickly detect and retransmit lost packets without

waiting for a full round-trip time, as is typically the case with TCP.

4 .Selective acknowledgments: QUIC uses selective acknowledgments (ACKs) to inform the sender about received packets, as
well as any gaps in the sequence of received packets. This allows the sender to quickly identify lost packets and retransmit
them, reducing the impact of head-of-line blocking.

By using these techniques, QUIC effectively mitigates the head-of-line blocking problem, leading to better performance,
reduced latency, and improved user experience, especially in environments with high packet loss or network congestion.

O-RTT Data Request Response Size

In a O-RTT (Zero Round-Trip Time) session, the amount of data that can be sent in the initial request depends
on the server's maximum allowed O-RTT data size, which can vary depending on the server's configuration
and preferences. There isn't a fixed theoretical capacity for all cases, as it depends on the server's specific
settings.

However, it's important to note that ORTT data should generally be limited to a small amount, as sending
large amounts of data in the initial request could increase the risk of replay attacks. The server must enforce
proper anti-replay measures and limit the use of O-RTT data to mitigate this risk.

In practice, O-RTT data is typically used for non-sensitive, idempotent requests like HTTP GET requests or
other actions that can be safely retried without causing unintended side effects. This ensures that even if a
replay attack occurs, the consequences are minimal.

In TLS 1.3, the "max_early data_size" parameter within the "NewSessionTicket" message specifies the
maximum amount of 0-RTT data a client can send during a O-RTT session. The "max_early data_size" is a 32-
bit unsigned integer, so the maximum value that can be represented is 2232 - 1 bytes, which is equal to
4,294,967,295 bytes or approximately 4 GiB.

However, it's important to remember that setting such a high limit for O-RTT data is not recommended, as it
could increase the risk of replay attacks. In practice, servers are likely to set much smaller limits to ensure
security and protect against potential abuse.

QUIC Frame Concept

The QUIC protocol uses a modular and extensible framing mechanism, which allows for the efficient encoding of
gffecrentlty es of data while also providing flexibility for future enhancements. Some common types of frames in
UIC include:

STREAM frames: These frames carry application data between endpoints and are used for reliable, in-order
transmission of data within a specific QUIC stream.

ACK frames: These frames are sent by the receiving endpoint to acknowledge the receipt of one or more packets,
indicating the packets' sequence numbers and any gaps (i.e., lost or delayed packets).

MAX_DATA and MAX_STREAM_DATA frames: These frames are used for flow control, with MAX_DATA controllin
the overall amount of data that can be sent across all streams and MAX_STREAM_DATA controlling the amount o
data that can be sent within a specific stream.

RESET_STREAM frames: These frames are sent bY an endpoint to indicate that it wants to abruptly terminate a
stream without completing the transmission of all data.

CONNECTION_CLOSE and APPLICATION_CLOSE frames: These frames are used to signal the termination of a QUIC
connection, either due to an error or a graceful shutdown initiated by the application.

PING frames: These frames are used to test the connection's liveness and to keep the connection alive in the
presence of idle timeouts.

By using frames to carry various types of information, QUIC enables efficient, flexible, and extensible
communication between endpoints while maintaining performance and security.

Introduction to QUIC for Network and Security Technologists

QUIC (Quick UDP Internet Connections) is a transport layer protocol started by Jim Roskind at Google (Now AWS) to improve the security,
performance, and reliability of web connections. QUIC uses UDP as its transport protocol, providing faster connection establishment,
reduced latency, and built-in encryption.

Internet Engineering Task Force IETFchanged its name to QUIC — no acronym to lose its Google roots. Greatly enhancing and integrating
with TCP features.

Encryption and security: QUIC incorporates Transport Layer Security (TLS) 1.3, ensuring all transmitted data is encrypted by default. This
enhances security compared to older HTTP/2 connections, which do not always require encryption.

Faster connection establishment:QUIC reduces the number of round trips required to establish a secure connection, resulting in a faster
and more efficient process compared to traditional TCP/TLS connections.

0-RTT connection resumption: QUIC supports 0-RTT (Zero Round-Trip Time) connection resumption, allowing for faster reconnections
bet?/veen cI|Ie<nts and servers that have previously communicated. This feature should be implemented with caution, as it can pose a risk of
replay attacks.

Connection migration: QUIC allows for connection migration, enabling a client to change its IP address without losing the connection. This
feature improves the stability of secure connections in mobile or unstable network environments.

Multiplexed streams and head-of-line blocking: QUIC's support for multiplexed streams can help mitigate head-of-line blocking, enhancing
the performance and security of connections by reducing latency.

Forward error correction: QUIC uses forward error correction (FEC) to reduce the impact of packet loss, enhancing the reliability and
security of connections.

Potential vulnerabilities: While QUIC is designed with security in mind, potential vulnerabilities exist, such as 0-RTT vulnerabilities, key
update attacks, DoS attacks, Connection ID privacy concerns, and implementation flaws. Awareness and mitigation strategies are essential
for ensuring optimal security.

Limited adoption and compatibility: QUIC is becoming widely adopted, with more implementations monthly. Network and security
technologists should be prepared to work with both QUIC-enabled and non-QUIC environments.

QUIC’s Top 5 Security Vulnerabilities

0-RTT vulnerabilities: The O-RTT (Zero Round-Trip Time) feature can make QUIC connections more susceptible to
replay attacks. An attacker may intercept and replay a O-RTT connection attempt to gain unauthorized access. To
mitigate this risk, servers should enforce proper anti-replay measures and limit the use of O-RTT data.

Key update attacks: QUIC's key update mechanism, which periodically updates encryption keys, could be exploited
by attackers to force clients or servers to use weak or compromised keys. This issue can be addressed by
implementing proper key management practices and ensuring that keys are securely generated and stored.

Denial of Service (DoS) attacks: QUIC's reliance on the User Datagram Protocol (UDP) could make it more
susceptible to DoS attacks. Attackers might flood a server with malformed or large packets to exhaust its resources.
Server operators should employ rate limiting, filtering, and other techniques to prevent such attacks.

Connection ID privacy concerns: QUIC's use of Connection IDs to maintain sessions can improve privacy but may
also be exploited by attackers to track users across different connections. Ensuring that Connection IDs are
generated and managed securely can help minimize this risk.

Implementation flaws: As with any protocol, security issues may arise due to flaws in the implementation of QUIC
by software developers. To address this, it is essential to use well-tested and regularly updated libraries, adhere to
best practices, and perform thorough security audits and testing of QUIC-enabled applications.

QUIC: Top 10 Things to Know

Encryption by default: QUIC incorporates built-in encryption using Transport Layer Security (TLS) 1.3, ensuring that
all data transmitted is secure by default. This is an improvement over HTTP/2, which does not require encryption.

Connection establishment: QUIC reduces the number of round trips required to establish a secure connection,
speeding up the process and making it more efficient.

0-RTT connection resumption: QUIC allows for O-RTT ﬁero Round-Trip Time) connection resumption, enabling
faster reconnections between clients and servers that have previously communicated. This can, however, pose a
risk of replay attacks if not properly implemented.

Improved privacy: QUIC's connection identifiers do not reveal user IP addresses, making it harder for
eavesdroppers to track users across different connections and improving privacy.

Resistance to replay attacks: QUIC has built-in mechanisms to counter replay attacks, but proper implementation
is essential to ensure the security of the protocol.

Connection migration: QUIC suEports connection migration, allowing a client to change its IP address without
losing the connection. This can help maintain secure connections, even in mobile or unstable network
environments.

Forward error correction: QUIC uses forward error correction (FEC) to reduce the impact of packet loss, enhancing
reliability and security.

Reduced impact of head-of-line blocking: QUIC's multiplexed streams can help mitigate head-of-line blocking,
improving the performance and security of connections.

Key QUIC vs. TCP Improvements

Head-of-line (HOL) blocking is a problem that occurs in TCP when a lost or delayed packet prevents the
processing of subsequent packets in the same data stream, causing increased latency and reduced
performance. QUIC solves the head-of-line blocking problem more effectively than TCP by employing the
following techniques:

1.Independent streams: QUIC uses multiplexed streams over a single connection, where each stream is
independent of the others. This means that if a packet is lost or delayed in one stream, it does not affect the
other streams. In contrast, TCP treats all data within a connection as a single, ordered byte stream, which
means that any packet loss or delay can block the entire connection.

2.Stream-level error correction: QUIC handles error correction and retransmissions at the stream level, rather
than at the connection level, as in TCP. This enables QUIC to recover from packet losses in one stream
without affecting other streams, further reducing the impact of head-of-line blocking.

3.Faster packet retransmissions: QUIC can retransmit lost packets more quickly than TCP because it does not
rely on a single, global retransmission timer. Instead, QUIC uses per-packet timers and can quickly detect and
retransmit lost packets without waiting for a full round-trip time, as is typically the case with TCP.

4.Selective acknowledgments: QUIC uses selective acknowledgments (ACKs) to inform the sender about
received packets, as well as any gaps in the sequence of received packets. This allows the sender to quickly
identify lost packets and retransmit them, reducing the impact of head-of-line blocking.

QUIC Encryption Explained vs TCP

QUIC packet header encryption is a mechanism that protects certain parts of the QUIC packet header from being observed or modfied by third
parties, such as middleboxes or eavesdropJ)ers. This enhances privacy and security compared to traditional transport protocols like TCP, where
some header information remains exposed.

In QUIC, the packet payload and certain parts of the header are encryFted together using the same encryption keys. The paylod is encrypted
using modern cryptographic algorithms like AES-GCM or ChaCha20-Poly1305, which also provide authentication.

Not all parts of the QUIC header are encrypted. The packet number, for example, remains in the clear. The reason is to allow for better handling of
packet loss and reordering, as the packet number helps identify which packets have been received and which ones are still missing. QUIC:

1.Encrypts the payload: The payload data (e.g., application data) is encrypted using a symmetric key negotiated during the QUIC handshake.

2.Protect specific header fields: QUIC protects certain header fields, such as the Key Phase, Spin Bit, and some reserved bits, using a technique
called "header protection." This is done by generating a header protection mask based on the packet encryption key and the unprotected header.

3.Apply the header protection mask: The header protection mask is XORed with the specific header fields that need to be protected. This process
encrypts these fields and prevents them from being observed or modified by third parties.

4.QUIC uses TLS for header encryption: The header protection mechanism is built into the QUICOFrotocoI itself. As a result, there's no "second
encryption" layer for the header compared to the payload. The encryption keys for both payload and header protection are derived from the
same initial secret negotiated during the QUIC handshake.

5.QUIC uses per packet encryption vs. TCP Stream-based encrxption: When TCP is combined with TLS, it provides stream-based encryption, which
means that the entire data stream is encrypted as a whole rather than on a per-packet basis. This can make it more challenging to handle packet
loss or reordering, as lost or out-of-order packets can cause the entire stream to stall until the missing packet is received.

6.TCP has Exposed headers: In, some header information remains exposed, which can potentially be exploited by attackers or used for network
analysis by third parties. This can be a privacy and security concern compared to QUIC's header protection.

7.TCP does not natively support connection migration: If a user changes their network connection (e.g., switg:hin% from Wi-Fi to cellular data), the
g)_(lstlng TCP connection/s must be terminated, and a new connection needs to be established, causing additional latency and potential
isruptions.

QUIC vs. TCP Encryption

Per-packet encryption: QUIC encrypts every packet individually with packet numbers in the clear. This allows for better handling
of ,oacket loss and reordering compared to TCP. QUIC uses modern cryptographic algorithms such as AES-GCM or ChaCha20-
Poly1305 for encryption and authentication.

Packet header protection: QUIC also protects packet headers from being observed or modified by third parties. This enhances
privacy and security while preventing potential attacks that could exploit exposed header information.

Connection migration: QUIC supports connection migration, which means that a connection can be transferred between IP
addresses without breaking the connection. This can be useful in cases of network changes or mObllltJ (e.g., when a user
switches grom Wi-Fi to cellular data). Per-packet encryption enables this feature, as packets can be independently decrypted and
processed.

TCP encryption (with TLS):

Protocol: TCP is built on top of IP and provides a reliable, ordered, and error-checked delivery of data between applications. TCP
is the foundation for many application-level protocols, including HTTP, HTTPS, and FTP.

Stream-based encryption: When TCP is combined with TLS, it provides stream-based encryption, which means that the entire
data stream is encrypted as a whole rather than on a per-packet basis. This can make it more challenging to handle packet loss
or reordering, as lost or out-of-order packets can cause the entire stream to stall until the missing packet is received.

Exposed headers: In TCP, some header information remains exposed, which can potentially be exploited by attackers or used for
network analysis by third parties. This can be a privacy and security concern compared to QUIC's header protection.

Connection migration limitations: TCP does not natively support connection migration. If a user changes their network
connection (e.g., switching from Wi-Fi to cellular data), the existing TCP connection must be terminated, and a new connection
needs to be established, causing additional latency and potential disruptions.

@ SECURITY
INSTITUTE

@ Join LIVE

Join Sl with
LinkedIn Creds

Join Sl with Email
View Badges on Website -

@ NetAnalysts Get
your new Badge!

Topics Prof Assn’s Conferences SME’s Vendors
Content Videos LiveStream Collaboration

Root Cause Analysis Chat GPT Cybersecurity
QUIC Protocol SharkFest - WireShark Betty Dubois
ISSA / I1SC2 Leadership Podcasts

PacketmanQ07

	QUIC Protocol Overview for Enterprises�With Packet Analysis Examples
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	SharkFest 2023
	QUIC Protocol Adoption
	Current Internet 1x				 QUIC 3x Faster�
	Slide Number 9
	Slide Number 10
	QUIC Initial Connect – some headers exposed
	Why Middleboxes (Firewalls) Blind to QUIC?
	Slide Number 13
	Benchmark Results
	Slide Number 15
	DLP May Not Check QUIC TLS 1.3!!!!!
	When does Encryption Prevent DLP Scanning? �Using 3rd party private cert prevents scanning�90+ Percent of Malware arrived Via Encrypted Traffic: WatchGuard
	50 year old TCP’s Idiosyncrasies
	TCP Data Duplication Details
	Significant Data Duplication
	Data Duplication & App Processing
	TCP – Packet Loss – Poor Recovery
	HOP/TTL Incongruity “our own man in the middle”
	TCP – Session Performance
	NAT, PAT or Route Changes Impact on Sessions
	QUIC Decrypted
	Slide Number 27
	Slide Number 28
	How to identify existing QUIC Users
	UDP vs TCP vs QUIC Firewall
	What to do next?
	Slide Number 32
	Decrypting TLS & QUIC Headers
	QUIC Improvements over TCP
	0-RTT Data Request Response Size
	QUIC Frame Concept
	Introduction to QUIC for Network and Security Technologists
	QUIC’s Top 5 Security Vulnerabilities
	QUIC: Top 10 Things to Know
	Key QUIC vs. TCP Improvements
	QUIC Encryption Explained vs TCP
	QUIC vs. TCP Encryption
	Slide Number 43

